Infinite Limits and Vertical Asymptotes

Example 1:

$$f(x) = \frac{2}{x+4}$$

 $\lim_{x \to -4^{-}} f(x) = -\infty$ $\lim_{x \to -4^{+}} f(x) = \infty$ $\lim_{x \to -4} f(x) = \text{Does Not Exist}$

Example 2:

$$f(x) = \frac{5}{\left(x+3\right)^2}$$

$$\lim_{x \to -3^{-}} f(x) = \infty$$
$$\lim_{x \to -3^{+}} f(x) = \infty$$
$$\lim_{x \to -3} f(x) = \infty = \text{Does Not Exist}$$

Example 3: Find vertical asymptote

$$f(x) = \frac{5}{x+3}$$

To find vertical asymptote,

set $x + 3 = 0 \Longrightarrow x = -3$

Therefore, $f(x) = \frac{5}{x+3}$ has a vertical asymptote at x = -3

 $\lim_{x \to -3^{-}} f(x) = -\infty$ $\lim_{x \to -3^{+}} f(x) = \infty$ $\lim_{x \to -3} f(x) = \text{Does Not Exist}$

Example 4: Find vertical asymptote of $f(x) = \frac{x}{x^2 - 16}$.

To find vertical asymptote, set $x^2 - 16 = 0$ and solve:

$$x^2 - 16 = 0 \implies x^2 = 16 \implies \sqrt{x^2} = \pm\sqrt{16} \implies x = \pm 4$$

Therefore, $f(x) = \frac{x}{x^2 - 16}$ has a vertical asymptote at $x = \pm 4$

Example 5: Find vertical asymptote of $f(x) = \frac{x}{x^2 + 9}$.

To find vertical asymptote, set $x^2 + 9 = 0$ and solve:

 $x^{2} + 9 = 0 \implies x^{2} = -9 \implies \sqrt{x^{2}} = \pm \sqrt{-9} \implies x = \pm 3i$

Therefore, $f(x) = \frac{x}{x^2 + 9}$ has no vertical asymptote.

Example 6: Find vertical asymptote of $f(x) = \frac{x^2 + x - 2}{x^2 + 6x + 8}$.

Note:
$$f(x) = \frac{x^2 + x - 2}{x^2 + 6x + 8} = \frac{(x+2)(x-1)}{(x+2)(x+4)}$$

To find vertical asymptote or hole, set (x + 2)(x + 4) = 0 and solve:

$$(x+2)(x+4) = 0$$

 $(x+2) = 0$ or $(x+4) = 0$
 $x = -2$ or $x = -4$
Therefore, $f(x) = \frac{x^2 + x - 2}{x^2 + 6x + 8}$ has vertical asymptote at $x = -4$; and
 $f(x) = \frac{x^2 + x - 2}{x^2 + 6x + 8}$ has a hole at $x = -2$.

The reason x = -2 is a hole and not a vertical asymptote is because f(x) contains the factor

(x+2) in both the numerator and denominator.

 $\lim_{x \to -4^{-}} f(x) = \infty$ $\lim_{x \to -4^{+}} f(x) = -\infty$ $\lim_{x \to -4} f(x) = \text{Does Not Exist}$

Graph has vertical asymptote at x = -4.

Graph has a hole at x = -2.

Graph has a non removable discontinuity at x = -4. Graph has a removable discontinuity at x = -2.