$$
x=-3 y^{2}+3 y-5
$$

Graph fails verticabline test. Therefore, the function $x=3 y^{2}+3 y-5$ is not a function.

$$
y=-3 x^{2}+3 x-5
$$

Graph passes vertical line test; graph represents a function.

However, graph fails horizontal line test.

$$
y=-3 x-5
$$

Graph passes vertical line test.

Graph passes horizontal line test.
${ }^{5}$ Graplf represents ${ }^{\text {a }}$ one-to-one function

Example 1
Let $f(x)=\frac{3}{5} x+4$.
a) $f(x)=\frac{3}{5} x+4$ a one-to-one function?

Yes, graph passes horizontal line test.
b) Find $f^{-1}(x)$:

$$
\begin{aligned}
& x=\frac{3}{5} y+4 \Rightarrow 5 \cdot x=5 \cdot \frac{3}{5} y+5 \cdot 4 \Rightarrow 5 x=3 y+20 \\
& \Rightarrow 3 y+20=5 x \Rightarrow 3 y=5 x-20 \Rightarrow y=\frac{5}{3} x-\frac{20}{3} \\
& f^{-1}(x)=\frac{5}{3} x-\frac{20}{3}
\end{aligned}
$$

Let $f(x)=\frac{3}{5} x+4$.
c) Domain of $f(x)=(-\infty, \infty)$
d) Range of $f(x)=(-\infty, \infty)$
e) Domain of $f^{-1}(x)=(-\infty, \infty)$
f) Range of $f^{-1}(x)=(-\infty, \infty)$

Example 2
$f(x)=x^{2} \quad x \geq 0$
a) Is $f(x)$ a one-to-one function?

Yes, graph passes horizontal line test.
b) Find $f^{-1}(x)$.

Let $y=x^{2}$
Exchange x and y :
$x=y^{2} \Rightarrow y^{2}=x \Rightarrow y= \pm \sqrt{x}$
Note that the inverse function is $y=\sqrt{x}$ $f^{-1}(x)=\sqrt{x}$

Let $y=x^{2}$

Domain of $f(x)=[0, \infty)$
Range of $f(x)=[0, \infty)$
Domain of $f^{-1}(x)=[0, \infty)$
Range of $f^{-1}(x)=[0, \infty)$

Example 3

Let $f(x)=\sqrt{x+4}$
a) Is $f(x)$ a one-to-one function?

Yes, graph passes horizontal line test.
b) Find $f^{-1}(x)$.

Let $y=\sqrt{x+4}$
Exchange x and y :
$x=\sqrt{y+4} \Rightarrow \sqrt{y+4}=x \Rightarrow(\sqrt{y+4})^{2}=(x)^{2}$
$\Rightarrow y+4=x^{2} \Rightarrow y=x^{2}-4, x \geq 0$
$f^{-1}(x)=x^{2}-4, x \geq 0$
$f^{-1}(x)=x^{2}-4, x \geq 0$
$f(x)=\sqrt{x+4}$
$f^{-1}(x)=x^{2}-4, x \geq 0$
Domain of $f(x)=[-4, \infty)$
Range of $f(x)=[0, \infty)$
Domain of $f^{-1}(x)=[0, \infty)$
Range of $f^{-1}(x)=[-4, \infty)$

Example 4

$f(x)=\sqrt{4-x^{2}}, x \geq 0$
a) Is $f(x)$ a one-to-one function?

Yes, graph passes horizontal line test.
b) Find $f^{-1}(x)$.

Let $y=\sqrt{4-x^{2}}$
Exchange x and y :
$x=\sqrt{4-y^{2}} \Rightarrow \sqrt{4-y^{2}}=x \Rightarrow\left(\sqrt{4-y^{2}}\right)^{2}=(x)^{2}$
$\Rightarrow 4-y^{2}=x^{2} \Rightarrow-4+y^{2}=-x^{2} \Rightarrow y^{2}=4-x^{2}$
$\Rightarrow y= \pm \sqrt{4-x^{2}}$
Note: Inverse function is $y=\sqrt{4-x^{2}}, x \geq 0$
$f^{-1}(x)=\sqrt{4-x^{2}}, x \geq 0$

$f(x)=\sqrt{4-x^{2}} \quad, \quad x \geq 0$
$f^{-1}(x)=\sqrt{4-x^{2}} \quad, x \geq 0$
Domain of $f(x)=[0,2]$
Range of $f(x)=[0,2]$
Domain of $f^{-1}(x)=[0,2]$
Range of $f^{-1}(x)=[0,2]$

Example 5

$f(x)=\sqrt[3]{3 x-7}$
a) Is $f(x)$ a one-to-one function?

Yes, graph passe horizontal line test.
b) Find $f^{-1}(x)$.

Let $y=\sqrt[3]{3 x-7}$
Exchange x and y :
$x=\sqrt[3]{3 y-7} \Rightarrow \sqrt[3]{3 y-7}=x \Rightarrow(\sqrt[3]{3 y-7})^{3}=(x)^{3}$
$\Rightarrow 3 y-7=x^{3} \Rightarrow 3 y=x^{3}+7 \Rightarrow y=\frac{x^{3}+7}{3}$
$f^{-1}(x)=\frac{x^{3}+7}{3}$

$f(x)=\sqrt[3]{3 x-7} \quad f^{-1}(x)=\frac{x^{3}+7}{3}$
Domain of $f(x)=(-\infty, \infty)$
Range of $f(x)=(-\infty, \infty)$
Domain of $f^{-1}(x)=(-\infty, \infty)$
Range of $f^{-1}(x)=(-\infty, \infty)$

Example 6

$f(x)=\cos x \quad x \in[0, \pi]$
a) Is $f(x)$ a one-to-one function?

Yes, graph passes horizontal line test.
b) Find $f^{-1}(x)=\cos ^{-1}(x)$
c) Domain of $f(x)=\{x: 0 \leq x \leq \pi\}$
d) Range of $f(x)=[-1,1]$
e) Domain of $f^{-1}(x)=[-1,1]$
f) Range of $f^{-1}(x)=\{x: 0 \leq x \leq \pi\}$

