Polar Equations of Conics:

$$r = \frac{ed}{1 \pm e \cos \theta}$$
 or $r = \frac{ed}{1 \pm e \sin \theta}$

where e (eccentricy) > 0 and

|d| = distance between the focus at the pole and directrix.

Note: Focus is at the pole.

Classification of Conics by Eccentricity

Let e = eccentricity.

- a) The conic is a ellipse for 0 < e < 1.
- b) The conic is a parabola for e = 1.
- c) The conic is a hyperbola for e > 1.

Four types of equations based on location and type of directrix:

- 1) Horizontal directrix above the pole: $r = \frac{ed}{1 + e \sin \theta}$
- 2) Horizontal directrix below the pole: $r = \frac{ed}{1 e \sin \theta}$
- 3) Vertical directrix to the right of the pole: $r = \frac{ed}{1 + e \cos \theta}$
- 4) Vertical directrix to the left of the pole: $r = \frac{ed}{1 e \cos \theta}$