Summary of Vectors in Space

Vector Operations:

Let $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ a) $\mathbf{u} + \mathbf{v} = \langle u_1, u_2 \rangle + \langle v_1, v_2 \rangle = \langle u_1 + v_1, u_2 + v_2 \rangle$ b) $-\mathbf{u} = \langle -u_1, -u_2 \rangle$; $-\mathbf{v} = \langle -v_1, -v_2 \rangle$ c) $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v}) = \langle u_1, u_2 \rangle + \langle -v_1, -v_2 \rangle = \langle u_1 + -v_1, u_2 + -v_2 \rangle$

d) Scalar Multiple:

$$b\mathbf{u} = b\langle u_1, u_2 \rangle = \langle bu_1, bu_2 \rangle$$
$$c\mathbf{v} = c\langle v_1, v_2 \rangle = \langle cv_1, cv_2 \rangle$$

Distance Between Points:

Distance Between the points (x_1, y_1, z_1) and (x_2, y_2, z_2) :

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Equation of Sphere

Let (x_0, y_0, z_0) be center of sphere and *r* be radius of sphere.

Then equation of sphere: $(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r^2$

Dot Product of Two Vectors

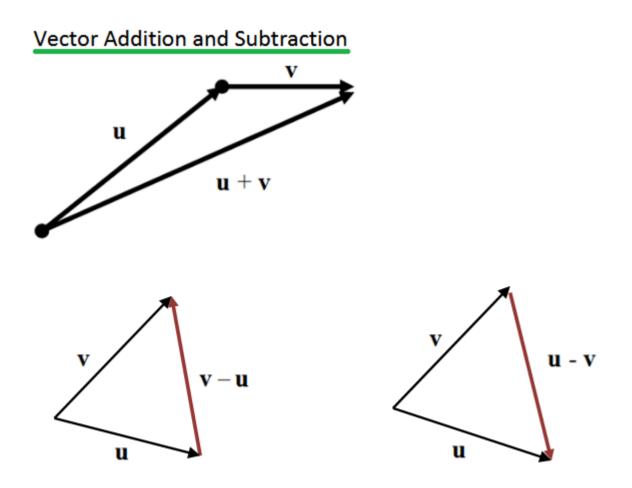
Let $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$

Then: $\mathbf{u} \cdot \mathbf{v} = u_1 \cdot v_1 + u_2 v_2$

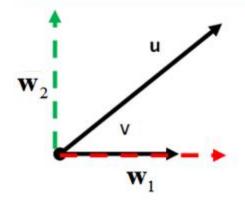
Angle Between Two Vectors

Let θ be the angle between **u** and **v**, where $0 \le \theta \le \pi$.

Then
$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \cdot \|\mathbf{v}\| \cos \theta$$
 or $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \cdot \|\mathbf{v}\|}$



Projection and Vector Components



Note: $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$ $\mathbf{w}_1 = \text{projection of } \mathbf{u} \text{ onto } \mathbf{v} = \text{proj}_{\mathbf{v}} \mathbf{u}.$ $\mathbf{w}_1 = \text{proj}_{\mathbf{v}} \mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2}\right) \mathbf{v}$

 $\mathbf{w}_2 = \mathbf{u} - \mathbf{w}_2$ = vector component of \mathbf{u} orthogonal to \mathbf{v}

Cross Product fo Two Space Vectors in Space

Let $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ $\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$ $= (u_2 v_3 - u_3 v_2) \mathbf{i} - (u_1 v_3 - u_3 v_1) \mathbf{j} + (u_1 v_2 - u_2 v_1) \mathbf{k}$

and

$$\|\mathbf{u} \times \mathbf{v}\| = \sqrt{(u_2 v_3 - u_3 v_2)^2 + (u_1 v_3 - u_3 v_1)^2 + (u_1 v_2 - u_2 v_1)^2}$$

($\mathbf{u} \times \mathbf{v}$) and \mathbf{u} are orthogonal.
($\mathbf{u} \times \mathbf{v}$) and \mathbf{v} are orthogonal.

Lines in space

Line L is represented by the parametric equations:

 $x - x_1 = ta$, $y - y_1 = tb$, $z - z_1 = tc$

Planes in space

Equation of plane: $a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$

Distance between point and plane

Distance between point and plane = $\frac{\left|\overrightarrow{PQ} \cdot \mathbf{n}\right|}{\left\|\mathbf{n}\right\|}$

Equation of Plane: ax + by + cz + d = 0

Normal vector $\mathbf{n} = \langle a, b, c \rangle$

Surfaces in Space:	
$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	Ellipsoid
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	Hyperboloid of One Sheet Axis of the hyperboloid is z-axis because coefficient the variable z is negative.
$\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	Hyperboloid of Two Sheet Axis of the hyperboloid is z-axis because coefficient the variable z is positive.
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$	Elliptic Cone Axis of the cone is z-axis because coefficient the variable z is negative.
$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	Elliptic Paraboloid Axis of the paraboloid is z-axis because the variable z is raised to the first power.
$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$	Hyperbolic Paraboloid Axis of the paraboloid is z-axis because the variable z is raised to the first power.

Cylindrical and Spherical Systems

Relationship Between Cylindrical System and Rectangular System Cylindrical System: (r, θ, z) Rectangular System: (x, y, z) $x = r \cos \theta; \quad r = r \sin \theta; \quad z = z; \quad x^2 + y^2 = r^2; \quad \tan \theta = \frac{y}{r}$

Relationship Between Spherical System and Rectangular System Spherical System: (ρ, θ, ϕ) Rectangular System: (x, y, z) $x = \rho \sin \phi \cos \theta; \quad y = \rho \sin \phi \sin \theta; \quad z = \rho \cos \phi;$ $\rho^2 = x^2 + y^2 + z^2; \quad \tan \theta = \frac{y}{x}; \qquad \phi = \cos^{-1} \left(\frac{z}{\sqrt{x^2 + y^2 + z^2}} \right)$

Relationship Between Spherical System and Cylindrical System Cylindrical System: (ρ, θ, ϕ) and Spherical System: (r, θ, z) $r^2 = \rho^2 \sin^2 \phi; \qquad z = \rho \cos \phi$ $\rho = \sqrt{r^2 + z^2}; \qquad \phi = \cos^{-1} \left(\frac{z}{\sqrt{r^2 + z^2}}\right)$