Scientific Calculator

Links to other pages:       Graphing Calculator


       
       


               
               
               
               
               


              
              




Absolute Value and Vertical Bars:

For each absolute value expression, make sure that a matching pair of vertical bars is used.
When vertical bars are used to denote absolute value, this calculator is not designed to handle
the case of absolute value expression nested inside another absolute value expression because it's too
ambiguous to interpret user's intention. For an expression like | 2 + |-6 + 3| - 9 |, use "Abs".
| 2 + |-6 + 3| - 9 | can be input as Abs(2 + Abs(-6 + 3) - 9).





Instruction Manual

Convert To Frac:
     a) Example: Simplify 1/2 + 3/4. Input 1/2 + 3/4 and click CALCULATE;
     to convert result to a fraction, click on "Convert To Frac" and then click on "CALCULATE"

     b) Example: convert 0.55 to a fraction. Click on "Convert To Frac", input 0.55 and click "CALCULATE"

     c) Example: reduce 12/18 to a fraction. Click on "Convert To Frac", input 12/18 and click "CALCULATE"

     e) Simplify 5¼ + 3½, input (5 + 1/4) + (3 + 1/2) and click "CALCULATE"
     f) Simplify 5¼ - 3½, input (5 + 1/4) - (3 + 1/2) and click "CALCULATE"
     g) Simplify 5¼ * 3½, input (5 + 1/4)*(3 + 1/2) and click "CALCULATE"
     h) Simplify 5¼ / 3½, input (5 + 1/4)/(3 + 1/2) and click "CALCULATE"



Power(^):
     a) Example: find 8 to the 3rd power; input 8^3 and click CALCULATE
     b) Example: find 4 to the Power of 1/3; input 4^(1/3) and click CALCULATE


x2, x3, x4, x5, x6, and x7

     a) Example: find 52; input 5 and x2 and click "CALCULATE"
     b) Example: find 53; input 5 and x3 and click "CALCULATE"
     c) Example: find 54; input 5 and x4 and click "CALCULATE"
     d) Example: find 55; input 5 and x5 and click "CALCULATE"
     e) Example: find 56; input 5 and x6 and click "CALCULATE"
     f) Example: find 57; input 5 and x7 and click "CALCULATE"




√ ̅ ̅, ∛ ̅ ̅, and ∜ ̅ ̅

     a) Example: find square root of 2; input √ ̅ ̅(2) and click "CALCULATE"
     b) Example: find cube root of 2; input ∛ ̅ ̅(2) and click "CALCULATE"
     c) Example: find fourth root of 2; input ∜ ̅ ̅(2) and click "CALCULATE"




SIMPLIFY ROOT

     a) Example: Simplify √ ̅ ̅(8). Click "SIMPLIFY ROOT" and √ ̅ ̅(8) and then click "CALCULATE"
     b) Example: Simplify ∛ ̅ ̅(16). Click "SIMPLIFY ROOT" and ∛ ̅ ̅(16) and then click CALCULATE"
     c) Example: Simplify ∜ ̅ ̅(32). Click "SIMPLIFY ROOT" and ∜ ̅ ̅(32) and click "CALCULATE"




nth root:
     a) Example: find 3rd root 8; input "nth root(3;8)" and click "CALCULATE"
     b) Example: find 4th root 81; input "nth root(4;81)" and click "CALCULATE"


nPr
     a) Example: find nPr(8;3); input nPr(8;3) and click CALCULATE.
     b) Example: find nPr(10;5); input nPr(10;5) and click "CALCULATE.


nCr
     a) Example: find nCr(8;3); input nCr(8;3) and click CALCULATE.
     b) Example: find nCr(10;5); input nCr(10;5) click CALCULATE.


Sin, Cos, Tan
     Note: Input will be read as radians.      Example: find sin(5); input Sin(5) and click "CALCULATE".


ASIN, ACOS, ATAN
     arcsin; arccos; and arctan
     Input will be read as radians.


List Factors
     Find factors of 8; input List_Factors(8) and click CALCULATE.


Common Factor
     Example: find greatest common factor of 8 and 12; input Common_Factor(8;12) and click CALCULATE



Common Multiple
      Example: find least common multiple of 8 and 12; input Common_Multiple(8;12) and click CALCULATE



Factor Trinomial
     a) Example: Factor 6x2 + 5x + 1
        Input: Factor_Trinomial(6;2;5) and click CALCULATE.
        Output: Factors: (2x + 1)(3x + 1)

     b) Example: Factor 3x2 - 16x - 35
        Input: input Factor Trinomial(3;-16;-35) and click CALCULATE.
        Output: Factors: Factors: (3x + 5)(1x - 7)

     c) Example: Factor 3x2 - 16x + 6
        Input: Factor_Trinomial(3;-16;6) and click CALCULATE.
        Output: Trinomial is 'Prime'.

     c) Example: Factor x2 - 4
        Input: Factor_Trinomial(1;0;-4)and click CALCULATE.
        Output: Factors: (1x + 2)(1x - 2)


Quadratic Formula